
Distribution and Abstract Types in Emerald

A. Black
N. Hutchinson
E. Jul
H. Levy
L. Carter

Reprinted from: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, Vol. SE-13, No. 1, JAN. 1987.

lEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13. NO. 1, JANUARY 1987 65

Distribution and Abstract Types in Emerald
ANDREW BLACK, NORMAN HUTCHINSON, ERIC JUL, HENRY LEVY, AND LARRY CARTER

Abstract-Emerald is an object-based language for programming
distributed subsystems and applications. Its novel features include 1)
a single object model that is used both for programming in the small
and in the large, 2) support for abstract types, and 3) an explicit notion
of object location and mobility. This paper outlines the goals of Em-
erald, relates Emerald to previous work, and describes its type system
and distribution support. We are currently constructing a prototype
implementation of Emerald.

Index Tenns-Abstract data types, distributed operating system,
distributed programming, object-oriented programming, process mi-
gration, type checking.

I. INTRODUCTION

W HILE distributed systems are now commonplace,
the programming of distributed applications is still

somewhat of a black art. We believe that the complexity
of distributed applications is heightened by the lack of
programming language support for distribution. For ex-
ample, most distributed applications are implemented by
calling operating system communications primitives, such
as send and receive. The programmer is responsible for
locating the communications target, explicitly packaging
parameters, and so on. Before the introduction of concur-
rent programming languages, concurrent programs were
constructed in a similar fashion. Language support for
concurrency greatly simplified concurrent programming;
we believe that language support for distribution can have
a similar effect on distributed programming. Experience
with the remote procedure call facilities of CedarIMesa
[2] and with the Eden Programming Language [I] has jus-
tified this belief. With Emerald, we intend to go beyond
simple syntactic support for message send and receive,
and address some of the fundamental semantic problems
of distribution.

Although distribution has many benefits [22], it also
introduces challenges for the designer of a distributed lan-
guage. First, the language must present a model of dis-
tributed computation; it must provide the conceptual
framework that allows the programmer to define the ob-
jects that he manipulates in both the local and distributed

Manuscript received January 31, 1986; revised June 16, 1986. This work
was supported in part by the National Science Foundation under Grants
MCS-8004111 and DCR-8420945, by the University of Copenhagen, Den-
mark, under Grant J.nr. 574-2,2, and by a Digital Equipment Corporation
External Research Grant.

A. Black, N. Hutchinson, E. Jul, and H. Levy are with the Department
of Computer Science, University of Washington, Seattle, WA 98195.

L. Carter is with the IBM Thomas 1. Watson Research Center, York-
town Heights, NY 10598. This work was performed while he was a visitor
at the University of Washington.

IEEE Log Number 861 1363.

environment. Second, it must provide for both intra- and
internode communication in an efficient manner. The se-
mantics of communication and computation should be
consistent in the local and remote cases. Third, it must
allow the programmer to exploit the inherent parallelism
and availability of a distributed system. Fourth, since
shutting down and recompiling an entire distributed sys-
tem in order to modify some component is unacceptable,
the language must permit system extensibility without re-
compilation; existing programs must continue to work in
collaboration with new programs.

Our research focuses on simplifying the programming
of distributed subsystems and applications by providing
language support for distribution. We have designed an
object-based language, called Emerald, and a distributed
run-time system for Emerald that facilitate the construc-
tion of distributed programs for a local area network of
independent nodes (workstations). The novel features of
Emerald include: 1) a single object model that is used for
both programming in the small and in the large, 2) support
for abstract types, and 3) an explicit notion of object lo-
cation and mobility. The goal of our research is to dem-
onstrate the feasibility of using one simple semantic model
for programming both sequential, single-node applica-
tions, and concurrent, potentially distributed applica-
tions. We currently have a prototype Emerald compiler
and run-time system running on a local area network of
VAX@ workstations.

The next sections present a discussion of previous work
in distributed programming languages and an overview of
Emerald. Following sections describe the type system and
the support for distribution.

11. REVIEW OF PREVIOUS SYSTEMS
To date, languages have supported distribution in sev-

eral different ways. In the Xerox Cedar System [33], a
remote procedure call facility allows programs to access
remote servers through standard CedarlMesa procedure
calls [2]. The advantage of this approach is that it requires
no change to the semantics of the language. Automati-
cally generated stub routines on the client and server ma-
chines are responsible for packing and unpacking param-
eters and transmitting and receiving messages. Pro-
grammers access a remote service in the same way that
they would access a local service, except that they must
explicitly locate and connect to the service before it can
be used.

"VAX is a registered trademark of Digital Equipment Corporation.

0098-558918710100-0065$01.00 O 1987 IEEE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-13, NO. I . JANUARY 1987

At the University of Washington, the Eden Program-
ming Language (EPL) [3] has been developed for writing
distributed applications on the Eden system [I]. EPL is
an extension of Concurrent Euclid [19] that provides lo-
cation-independent invocation of Eden's objects in an in-
tegrated distributed system. Because the location of an
Eden object is (conceptually) evaluated at each invoca-
tion, objects are free to move at any time; one need not
locate or connect to an object before invoking it.

The M.I.T. Argus system [24], [25] is an ambitious
distributed language project that extends the CLU lan-
guage [23] to support atomic transactions in a distributed
environment. An Argus Guardian encapsulates the notion
of a physical machine. Inside a guardian are data objects
and processes. One Guardian communicates with another
by calling a handler in the target Guardian, to which data
are passed by value.

In general, object-based systems and languages have
viewed their objects in two ways: as large, long-lived re-
sources (e.g., files) as in operating systems such as Hydra
[3S] and StarOS [20], or as small resources (e.g., records
and integers), as in languages such as CLU [23] and
Smalltalk [IS]. In a distributed environment, both views
seem to have their place; the Argus and EPL languages
each support two kinds of objects. Argus has Guardians,
which are network-wide objects, and CLU objects, which
are local to a Guardian; EPL has network-wide Eden ob-
jects that contain local EPL variables, monitors, and
modules. The reason for this dichotomy is one of locality
and performance; local objects communicate through
shared store, while network objects communicate through
message passing, which requires more communications
overhead. Unfortunately, this requires the programmer to
use two different object abstraction mechanisms, to code
in two different styles, and to foresee all possible uses to
which an object will be put. For example, while program-
ming a Collaborative Editing System in Argus, Greif et
al. [16] Fave observed that a designer can be forced to use
a Guardian where a cluster might be more appropriate.

Emerald has drawn on the experience of all of these
systems. The most important difference between Emerald
and these systems is Emerald's uniform model of com-
putation. Like Smalltalk, all entities in Emerald are ob-

TABLE 1
EMERALD LANGUAGE FEATURES

jects, and a single semantic model suffices to define them.
Unlike Smalltalk, however, Emerald is a distributed pro-
gramming language; its object model is sufficient to de-
scribe both local data objects and potentially remote
objects containing independent processes. Table I
enumerates the principal features of Emerald and com-
pares them to those of Argus, Xerox RPC, EPL, and
Smalltalk. The following section provides a brief over-
view of the Emerald programming language, focusing on
its uniform object model, and following sections deal with
two important aspects of Emerald: its type system which
is based on the concept of abstract types, and its support
for distribution.

111. INTRODUCTION TO EMERALD
Emerald is object-based and all information is encap-

sulated in objects. An object model is appropriate for a
distributed system because it implicitly defines 1) the units
of distribution and movement, and 2) the entities that
communicate. All objects in Emerald are coded using the
same object definition mechanism, regardless of the way
in which they will be used. The Emerald object model is
appropriate for defining small objects such as integers,
characters, and Booleans as well as large objects such as
directories and compilers. While different objects may be
represented by the system in different ways, all objects
exhibit the same semantics. Each Emerald object exports
a set of operations; an object can be manipulated only by
invocation of one of those operations. Furthermore, Em-
erald objects are mobile. Objects can move at any time,
and can be invoked without knowledge of their location.

Each Emerald object has four components:
1) An identity, which distinguishes the object from all

others within the network.
2) A representation, which consists of the data stored

in the object. The representation of a programmer-defined
object is composed of a collection of references to other
objects.

3) A set of operations, which defines the functions and
procedures that the object can execute. Some operations
are exported and may be invoked by other objects, while
others may be private to the object.

4) An optional process, which operates in parallel with

Uniform Object Model

Distribulion

Mobile Objecls

Dircct Objects

Concurrency Conwol

Type Checking

Abslracl Types

Smallhlk

d

d

Emerald

4

d

d

4

4

d

4

Eden
Xerox RPC

4

d

4

d

d

EPL

4

4

d

Argus

Objects

d

d

4

CLU

4

d

4

Guardians

d

4

4

BLACK er a / . : DISTRIBUTION AND ABSTRACT TYPES IN EMERALD 67

const inCoreFile = = object inCoreFile
export Read, Seek, Write
monitor

4 const maximumSize = = 200
const CharacterVector = = Vector. of [Character]
var contents : Charactervector
var position : Integer

8 operation Read -r [c : Character]
if position c+ contents. upperbound then

c + contents.getUement[position]
position + position + 1

12 else
c + nil

end if
end Read

16 operation Seek[p : Integer]
position + p

end Seek

20 operation Write[c : Character]
assert position c+ contents. upperbound
contents.setElement[position, c]
position + position + 1

24 end Write

initially
contents + Character Vector. create[maximumSize]
position + 0

28 end initially
end monitor

end inCoreFile

Fig. 1. An inCoreFile object.

invocations of the object's operations. An object with a
process has an active existence and executes indepen-
dently of other objects. An object that has no process is a
passive data object and executes only as a result of invo-
cations.

An Emerald object also has several attributes. An ob-
ject has a location that specifies the node on which that
object is currently resident. Emerald objects can be de-
fined to be immutable. Immutability is an assertion on the
part of the programmer that the abstract state of an object
does not change; it is not a concrete property and the sys-
tem does not attempt to check it. On the other hand, the
system takes advantage of immutability by copying such
objects on remote reference.

Fig. 1 shows an Emerald definition of a simplified file
object. This object supports the usual read, seek, and write
operations expected from files, but of only a single char-
acter at a time. Its representation consists of a vector of
characters and a current position indicator. Its three op-
erations, Read, Seek, and Write, are exported and there-
fore available to users of the object. Since inCoreFile has
no process, it is a passive data object and executes only
as a result of invocations.

To exploit the inherent parallelism of distributed sys-
tems, Emerald supports concurrency both between ob-
jects and within an object. Separate threads of control are
provided in the form of processes. Each object may have
a process section specifying a parameterless, anonymous
operation to be invoked asynchronously when the object
has been initialized. Processes on the same processor ex-
ecute in quasi-parallel with respect to each other and con-

currently with respect to processes located on other pro-
cessors.

While an object has a single independent process, at
any point in time multiple processes can be executing
within a single object. This results from multiple invo-
cations of an object's operations by other processes. Op-
erations and variables may optionally be specified in a
monitor section of the object. Processes executing moni-
tored operations have exclusive access to the monitored
variables and may synchronize using conventional con-
dition variables [I 81. An object's process normally exe-
cutes outside the monitored section, but, like any other
process, it can invoke the monitored operations should it
need access to shared variables.

Each object has an optional initially section-a param-
eterless operation that executes exactly once when the ob-
ject is created and is used to initialize the object's state.
When the initially operation is complete, the object's pro-
cess is started and invocations can be accepted.

Although Emerald has a single, uniform model of ob-
jects, objects are implemented in several different ways.
An important goal of Emerald is to provide a very efficient
implementation for objects. In order to accomplish this
goal, the Emerald compiler chooses for each object an
implementation style appropriate for its use. Some sup-
port of this type is available in CLU [31]. The Smalltalk
language also has two implementation styles: one for
primitive objects such as integers and arrays, and one for
user-defined objects. While primitive object operations are
relatively efficient in Smalltalk, there is no mechanism
whereby users can define equally efficient types.

There are three styles of implementation available for
Emerald objects. Standard types such as integer are usu-
ally implemented by a single word of storage and com-
piler-generated in-line operations. For example, the in-
teger add operation is reduced to a single machine
instruction. Objects that are local to another object can
often be implemented by a compiler-allocated data area
and their operations implemented as normal (Pascal-like)
procedure calls, thus avoiding the more general invoca-
tion mechanism provided by the run-time kernel. Finally,
objects that can move or be remotely referenced are im-
plemented by a kernel-allocated data area and are indi-
rectly referenced through an object table. Invocations of
such objects are performed by a combination of compiled
code and the run-time kernel. For example, if inCoreFile
is used as a temporary file within another object it may be
represented in storage with local pointers and manipulated
by in-line code. If it is used to convey information be-
tween passes of a distributed compiler it will require a
remote procedure call interface.

IV. TYPES IN EMERALD

Emerald is a statically typed language that supports ab-
stract types. We first motivate our decision to make Em-
erald a typed language (Section IV-A) and our decision to
support abstract types (Section IV-B). The conformity re-
lation which forms the basis of the type system of Emer-

68 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. I , JANUARY 1987

ald is then introduced, first informally in Section IV-C,
and then rigorously in Section IV-D. Section IV-E com-
pares our type system to that of other languages and pro-
vides reasons for the major differences, and Section IV-F
discusses type system implementation considerations.

A. Why Types?
In standard value-oriented programming languages, the

type system protects the user from misinterpretation of
values, e.g., it prevents a character operation from being
applied to an integer. In an object-oriented language the
programmer is not allowed to apply operations to values
at all; he may request only that an object perform an op-
eration on itself. The point here is that the representation
of the object is never handled directly by external opera-
tions; only the internal operations of the object are al-
lowed access to its representation. As a consequence, nei-
ther Smalltalk objects, nor Eden objects, nor Emerald
objects need be typed in order to guarantee their integrity.
In contrast to Smalltalk, where identifiers do not have de-
clared types, we have chosen to make Emerald a typed
language, i.e., the programmer must associate a type with
each identifier that she declares. We expect to see several
advantages from this approach.

First is better detection and notification of program-
ming errors. Many errors found in Smalltalk program-
ming are of the "message not understood" variety. In
Smalltalk this message can be generated only at run time,
when an invocation is attempted on an object that does
not implement it; it generally indicates that a type error
has occurred. In other words, the object assigned to a vari-
able is not of the required "type", because it does not
support the required operation. In Emerald, we wish to
detect such errors earlier. Because Emerald is typed, these
errors will often be detected through static type checking
at compile time rather than at run time. However, due to
the flexibility demanded by our environment, we cannot
do complete type checking at compile time, and some type
errors will be detectable only at run time. Even when this
is the case, type errors will be detected when a type-
incorrect assignment is attempted rather than when invok-
ing an unimplemented operation on an object. Also, rather
than generating error messages that indicate that an op-
eration was not implemented, we wish to generate mes-
sages that give a better indication of the reason for the
operation not being understood. Making Emerald a typed
language allows us to do this, generating messages that
indicate that "object 0 is not of type T."

Second, we feel that type checking can reduce the cost
of invocation. Since there is no possibility of "message
not understood" errors at invocation time, it follows that
no check is necessary. In addition, we have developed an
alternative procedure for locating the code to execute in
response to an invocation request (doing method lookup
in Smalltalk terminology) that may provide better per-
formance than existing schemes. This is made possible by
the introduction of typing into the language and is de-
scribed more fully in Section IV-F.

B. Abstract Types
Emerald was designed to be used in the construction of

open systems, i.e., those where system-level objects may
be created and added to a running system after the basic
system is operational. This implies that the type system
must be flexible enough to enable old code to invoke
newly implemented objects, provided that these objects
behave in the expected way. This flexibility and extensi-
bility is provided by both Smalltalk and Eden, but neither
of these systems are typed, as was noted above. Emerald
wishes to retain this flexibility, but within the framework
of a typed programming language.

In order to do this, Emerald objects are typed ab-
stractly. An abstract type defines the interface of an ob-
ject-the set of operations supported, their signatures, and
(in principle) their semantics. An operation signature in-
cludes the operation name and the number, names, and
abstract types of the arguments and results. Each object
implementation defines a similar set of operations, but in
addition provides 1) a concrete representation for the ob-
ject and 2) code to implement each of the operations. Ab-
stract types are themselves objects that export a get-
Signature operation. For details on this aspect of the type
system, see [4].

The relationship between abstract types and object im-
plementations is many-to-one in both directions: each ob-
ject may implement several abstract types, and each ab-
stract type may be implemented by several different
objects. Fig. 2 illustrates these relationships. The object
DiskFile implements the abstract type InputOutputFile,
the abstract types InputFile and OutputFile (which require
only a subset of the InputOutputFile operations), and also
the abstract type Any (which requires no operations at all).
The abstract type InputOutputFile illustrates that an ab-
stract type may have several implementations, perhaps
tuned to different usage patterns. Temporary files may be
implemented in primary memory (using InCoreFile ob-
jects) to provide fast access while giving up permanence
in the face of crashes. On the other hand, permanent files
implemented using DiskFiles would continue to exist
across crashes.

This separation of specification and implementation
provides the flexibility found in untyped languages such
as Smalltalk and Eden, but within the framework of a
strongly-typed language. We expect to take advantage of
this flexibility in two ways.

New objects satisfying old interfaces can be added at
any time without changing existing objects. For example,
consider a windowing system where Window is an ab-
stract type. New windows with new functionality can be
added, and the window manager can manipulate them
without requiring any modifications, or even recompila-
tion or relinking.

An abstract type may have multiple implementations
tailored to particular usage patterns, such as the file ex-
ample of the previous section. In addition to multiple im-
plementations explicitly provided by the programmer, the
compiler itself may generate multiple implementations of

BLACK er 01.: DISTRIBUTlON AND ABSTRACT TYPES IN EMERALD 69

InputFile OutputFile

Write

DiskFile

Write

Legend

Abstract type

Implementation H
Fig. 2. Abstract types and object implementations.

some objects from the same source code. For example,
one implementation might be appropriate for a remote ob-
ject, another for the case in which the object and its in-
voker are known to be on the same machine, and yet an-
other when the object is known to be private to some
containing object.

An additional benefit of the separation of abstract types
and implementations is that it is exactly the separation of
specification and implementation necessary for top-down
program design and separate compilation. In some exist-
ing languages, additional syntax and semantics are re-
quired to make possible this separation of specification
and implementation. These include external declarations
in Concurrent Euclid, Pascal, and Modula, and separate
specification and implementation parts in Ada@. The type
system of Emerald directly supports separation of speci-
fication and implementation; no additional language fea-
tures are necessary.

C. The Emerald Type System
In Emerald, all identifiers are typed abstractly, i.e., the

programmer declares the abstract type of the objects that
an identifier may name. Such a declaration captures his
knowledge of the set of invocations to which those objects
should respond.

The notion of type conformity is central to Emerald.
The legality of an assignment is based on the conformity
of the assigned object and the abstract type declared for
the identifier. This conformity will always be checked at

'Ada is a registered trademark of the U.S. Department of Defense (Ada
Joint Program Office).

compile time, except where a run-time check is explicitly
requested by the programmer. Roughly, a type P con-
forms to another type Q if P provides at least the opera-
tions of Q. (P may also provide additional operations.)
Moreover, the types of the results of P's operations must
conform to the types of the results of the corresponding
operations of Q. Finally, the types of the arguments of
the corresponding operations must conform in the oppo-
site direction, i.e., the arguments of Q's operations must
conform to those of P's operations.

To illustrate the need for the parameter matching rules,
consider the following examples. Any is the abstract type
containing no operations, thus every type conforms to it.

const IntegerPusher = =

type
operation Push[Integer]

end

const AnyPusher = =
tY Pe

operation Push[Any]
end

These rather useless types define "write-only storage"
into which integers and arbitrary objects can be Pushed.
Intuitively, one would expect AnyPusher to conform to
IntegerPusher, because an implementation of AnyPusher
can be used wherever an IntegerPusher is required. The
rules bear this out; the two types are identical except for
the argument types of Push, and these conform in the op-
posite direction, i.e., Integer conforms to Any.

Now consider

const IntegerPopper = =

tY Pe
operation Pop + [Integer]

end

const AnyPopper = =

tY Pe
operation Pop + [Any]

end

Here IntegerPopper conforms to AnyPopper, because the
results of Pop conform in the same direction. Finally, ob-
serve that

const IntegerStack = =

type
operation Push[Integer]
operation Pop + [Integer]

end

and

const AnyStack = =
type

operation Push[Any]
operation Pop + [Any]

end

are incomparable; they do not conform in either direction.

70 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. I. JANUARY 1987

The reason for this should be obvious; users of an
IntegerStack object expect its Pop operation to return an
integer, so an AnyStack clearly will not do. Users of an
AnyStack expect to be able to Push arbitrary objects; the
Push of IntegerStack can be applied only to integers.

Emerald type conformity is similar to type compatibil-
ity in Owl [30], but differs in a fundamental way from
inheritance in Smalltalk. In Smalltalk, a subclass does not
necessarily conform to its superclass; for example, it may
ovemde some of the operations of the superclass so that
they expect different classes of argument. Moreover, one
class may conform to another without a subclass relation-
ship existing between them. What a subclass and its su-
perclass do have in common is part of their representation
and some of their methods. In short, inheritance is a re-
lationship between implementations, while conformity is
a relationship between interfaces.

i) s f = A, or
ii) arity(s) = arity(sf) and writing

s f = a;, . . , ah + ri, . . 9 rA

we have

<a;, a i> E 8, for i = 1, 2, . . , m

< q , r - > € 8 , f o r j = 1 , 2 , a - - , n .

Informally, corresponding pairs of results must be in 8
and corresponding pairs of arguments must be in 8-'.
Looking at the conformity of Integerpopper and Any-
Popper from the previous section, we have

s = +Integer

and

D. Formal Dejnition of Conformity S ' = +Any

The above explanation of conformity in Emerald was
not well-founded; the conformity of two types depended
on the conformity of the types of the arguments and re-
sults of the operations defined by the types. This section
will present a formal definition of the conformity relation
between types, which forms the basis of Emerald's type
system, as well as an algorithm for checking conformity.
This presentation of conformity has been simplified in two
ways. First, we have omitted operations which are func-
tions and types which are immutable; these would only
clutter the presentation with unnecessary detail. Second,
we have ignored Emerald's support for polymorphism
which is beyond the scope of this paper.

Let T be the set of type names, and let ai, rj E T, for
0 5 i 5 m, 0 5 j 5 n. A signature is either an expression
of the form

a] , . . , am + r, , . . , r,,
which has arity <m, n > , or the distinguished null sig-
nature, A, on which arity is undefined. Let S be the set
of all signatures, and F be the set of operation names. A
type declaration of t E T is a total function (also denoted
t) from F to S. Obviously, in actually declaring a type,
one need only specify the operations which have non-null
signatures. For example, the type IntegerStack can be de-
fined as:

/ Integer + if x = Push

IntegerStack(x) - { +Integer if x = Pop

I " otherwise.

Suppose 8 is a binary relation on T, i.e., 8 C T X T.
Intuitively, 8 is a set of pairs which we hope are true
assertions about conformity, i.e., < t , u > E 8 implies
that t conforms to u. However, we have not defined con-
formity yet, so the intuition cannot be formalized. Now
suppose that s, s f are elements of S. Then 8 induces a
relation E on S by the following definition.

<s, s'> E E iff:

In order for < s, s ' > to be in E, <Integer, Any > must
be in 8.

Now, what is to distinguish an arbitrary 8 from our
desired conformity relation? Exactly the requirement that
the corresponding pairs of signatures are in E. Formally,
we say that 8 is valid if, for all type names t and u, and
all operation names f E F

Lemma: The union of two valid relations is valid.
Proof: Follows immediately from the definitions.

Corollary: There is a unique maximal valid relation,
(which we will denote by .> .

Finally we have defined conformance. We write
< t, u > E D> as t 9 u or t conforms to u. One nice thing
about valid relations all being contained in D> is that we
know that if two separately defined systems of declara-
tions are each valid, then we will not get any surprises
when we combine the declarations. Our concept of con-
formity is similar to the notion of implicit conversion of
types as studied by Reynolds [28], [29].

Now we can define a decision procedure that will check
whether a given statement of the form "t + u" is true.
Starting from the pair < t, u > , we will build up the two
relations 8 and E recursively. 8 will be a valid relation
on T and E will be the relation on S induced by 8 . We
will do this by, whenever we insert < a , b > into 8 , in-
sertingpairs <a (f) , b(f)> intoEforallfsuchthatb(f)
A. This ensures that 8 remains valid. Additionally,
whenever we insert <s , s t > into E, we insert all the ap-
propriate <a/ , a i> 's and < rj, r - > 'S into 8 so that E is
indeed the derived relation for 8. But we fail in attempt-
ing to insert a pair < a(f), b(f) > into E if the arities of
a(f) and b(f) mismatch, or if a (f) = A when b(f) #
A. If we succeed, we will have constructed a valid rela-
tion. By the unique maximality of .>, this will prove that
t + u. On the other hand, we only inserted necessary ele-
ments into the relations 8 and E, so if the procedure fails,
then t does not conform to u.

BLACK et al.: DlSTRIBUTlON AND ABSTRACT TYPES IN EMERALD

Let us apply this decision procedure to check whether
IntegerStack 9 AnyStack. In order to insert <Integer-
Stack, Anystack> into 9 , we must insert

and

= <Integer -*, Any -* >
into E. Inserting < -* Integer, -* Any > into E causes us
to insert <Integer, Any > into 9 which causes no further
insertions in E since Any@) = A for all x. Attempting to
insert <Integer -*, Any -* > into E causes us to insert
<Any, Integer> into 9 , which in turn causes us to at-
tempt to insert < Any(+), Integer(+) > into E which fails
since Any(+) = A and Integer(+) # A. Thus we con-
clude that IntegerStack does not conform to AnyStack.

Note that there is no need to start with empty relations
9 and E; any valid relation 9 on types and its induced
relation E on signatures may be used as a starting point.
In actually implementing this procedure, the relations 8
and E may be retained after conformity checking, thus
eliminating the need to recompute them.

E. Comparison to Other Languages
One currently popular view of a data type is as a set of

operations. That is, each data type is a set of operations
that may be applied to values of the type, thereby provid-
ing an interpretation for those values [I 11, [23]. There
are, however, two approaches to the question of the own-
ership of these operations.

A number of languages, including Russell [9] and CLU
[23], consider the operations to bejields of the type; that
is, the operations are owned by the type, and are selected
from the type. As an example, consider the type Integer.
In Russell or CLU, the type would own operations like:

operation 0 -* Integer
operation + (Integer X Integer) -* Integer
operation * (Integer X Integer) -* Integer

In order to add two integers in CLU (Russell is similar),
one selects the + operation from the Integer type to apply
to the values:

result : = Integer$ + (argumentl, argument2)

The other approach is exemplified by Smalltalk. In
Smalltalk, the operations that may manipulate objects are
broken into two disjoint sets. Some operations, generally
those that create new objects, are defined as messages to
(operations on) a distinguished object called the class. An
example of a class operation is creating an integer value
from a character string representing the value. The other
set of operations are defined as messages to the object
itself; the operations + and * on integers are examples.
The Smalltalk statement that adds two integers and as-
signs the result to a variable is:

result + target + argument

This statement is interpreted to mean "send the message
with the name + to the object target, providing the object
argument as argument, and assign the resulting object to
the variable result."

In Emerald, we have adopted an approach similar to
Smalltalk's. Our primary motivation was a concern over
distribution. In the CLU and Russell approach, the state-
ments in the body of an operation have access to the rep-
resentation of an arbitrary number of objects of the type
of interest. In particular, the implementor of the addition
operation on integers is allowed to access the bits that
make up the representation of both of the arguments. In
the face of distribution, implementing this is potentially
very complicated. Either the two objects need to be moved
to a common location in order to perform the operation,
or else the implementation needs to be able to perform
arbitrary primitive operations remotely. In our view, only
the object that is performing the operation has its repre-
sentation accessible, and all other objects, including oth-
ers of the same type, must be accessed through invoca-
tions.

The view of operations as being owned by objects is
also required by our separation of abstract types and im-
plementations. Since the two integers being added may in
fact be implemented differently, the only way of imple-
menting the integer operations is by invoking lower level
operations that each concrete type may implement differ-
ently.

F. Type Implementation Considerations

A major consequence of the flexibility of Emerald's
type system is that multiple objects are allowed to imple-
ment a single abstract type. In principle, multiple imple-
mkntations of a data type cause no problems because op-
erations are invoked by name, and it is up to the invoked
object to understand the name. In practice, it is important
to optimize this process.

In Smalltalk and Eden, the cost of invocation by name
appears at invocation time since the appropriate code for
each invocation must be located when the invocation is
attempted. Substantial effort has been put into implemen-
tations of Smalltalk that reduce the overhead of code lo-
cation (method lookup in Smalltalk terminology) to an ac-
ceptable level [lo], [21]. Techniques include caching of
operation addresses at call sites and making likely guesses
about the implementations of objects with certain abstract
types (like Integer), thereby optimizing for the common
case. Since our object model is similar to that of Small-
talk, all of the optimizations that can be done in the im-
plementation of Smalltalk could also be done in Emerald.
In addition, the fact that Emerald is statically typed al-
lows an alternative code location strategy that may yield
better performance.

With each identifier, we associate a vector of opera-
tions. The length of this vector is determined by the iden-
tifier's abstract type, since only the operations defined by

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY

DiskFile InCoreFile

0 Object

I Fig. 3. (a) Before the assignment. (b) After the assignment.

the abstract type may be invoked on the object named by
the identifier. The content of the vector is determined by
the implementation of the object currently named by the
identifier, since it consists of the addresses of the machine
code sequences that implement the operations. Consider
a variable f of abstract type a . The operations that may be
performed on f are determined by a; the addresses of the
appropriate code for these operations depend on the im-
plementation c of the object named by f. Thus the pair
<a, c > uniquely determines an operation vector asso-
ciated with f. In Fig. 3(a), a is InputFile and c is DiskFile.
The vector has one element for each of the InputFile op-
erations read and seek; the values of these elements are
the addresses of the corresponding DiskFile routines.

When an assignment is made to f, the contents of its
operation vector may need to be changed. For example,
when an InCoreFile object is assigned to f, the operation
vector associated with f must become appropriate to the
pair < InputFile, InCoreFile> , as shown in Fig. 3(b).

This scheme replaces the method lookup required by
Smalltalk by a single indexing operation. The cost is an
additional word of storage for the pointer to the operation
vector, and occasional recomputation of the elements of
these vectors on assignment. The operation vectors them-
selves may be shared between all identifiers of identical
abstract type that name objects with the same implemen-
tation, since it is the pair cabstract type, implementa-
tion > that determines the contents of the vector.

I As previously stated, the principal objective of Emerald
is to simplify the construction of distributed programs.

I Systefn concepts such as concurrency, multiple nodes, and

object location are integrated into the language. This dif-
fers from, for example, EPL, where distribution is lay-
ered on an existing language through the use of a prepro-
cessor, and from Accent [27], where distribution is
provided as an operating system facility.

In Emerald, objects encapsulate the notions of process
and data and are the natural unit of distribution. At any
time each Emerald object is located at a specific node.
Conceptually, a node is an object of a system-defined
type. Node objects support node-specific operations,
thereby allowing objects to invoke kernel operations. Such
access to the underlying kernel is analogous to that pro-
vided by kernel ports in Accent.

Programmers may choose to ignore or exploit the con-
cept of object location. In a distributed system, objects
must be able to invoke other objects in a location-inde-
pendent manner. This facility makes network services
transparently accessible. In Emerald, locating the target
of an invocation is the responsibility of the system. An
object is permitted to move between successive invoca-
tions, or even during an invocation. While applications
can control the placement of objects, most applications
can ignore location considerations since the semantics of
local and remote invocation are identical.

Nevertheless, there are two reasons for making location
visible to the programmer: performance and availability.
In a network, the efficiency of interobject communication
is obviously a function of location. An application can
colocate objects that communicate intensely and thus re-
duce the communication overhead. Alternatively, numer-
ical applications can achieve significant performance gains
by placing concurrent subcomputations on different nodes.
An object manager may increase availability by placing
replicas of its objects on different nodes.

BLACK et al.: DISTRIBUTION AND ABSTRACT TYPES IN EMERALD

A. Object Mobility
An important feature of the Emerald design is support

for unrestricted object mobility. Mobility (sometimes
called process migration in nonobject systems) has been
discussed in the literature as a design goal for many op-
erating systems [I], [7], [26], [27], [34], although full
implementations are not common. Mobility can be used
to improve the overall performance of a distributed sys-
tem by load sharing, i.e., moving objects from loaded
nodes to idle nodes. For example, when a user starts a
compilation and concurrently continues editing, it is often
an advantage to move the compilation to another (less
loaded or more powerful) node [12]. The advantages of
load sharing are offset by the cost of obtaining load in-
formation and the cost of moving objects. The lower the
cost of object relocation, the greater the potential for per-
formance improvements. Therefore a goal of Emerald is
to provide low-cost mobility.

Emerald differs from previous systems with migration
facilities in the grain of mobility. Systems such as V [34],
DEMOSIMP [7], and LOCUS [26] use processes (and
their associated address spaces) as the unit of mobility.
Emerald advocates the use of a single object model and
therefore allows any object, even a single data item, to be
the unit of migration.

Emerald provides two primitives to control location. A
programmer can& the location of an object at a specific
location, or the programmer can move an object to a spe-
cific location. The location is specified either directly, by
refering to a node object, or indirectly, by refering to an-
other object's current location. Thus, while programmers
can ignore location with respect to invocation, they can
also choose to benefit from the advantages of specific lo-
cations within the network.

B. Parameter Passing and Call-by-Move

In Emerald, objects communicate through invocation.
Since the invocation parameters must themselves be ob-
jects, the natural parameter passing method is call-by-
object-reference. This is similar to CLU and Smalltalk.
However, call-by-reference does present a problem when
used in a distributed system. On a remote invocation, ref-
erences by the called object to its parameters are likely to
require remote invocations also. To avoid seriously de-
grading performance, systems such as Argus have as-
sumed that parameters to remote calls must be passed by
value [17]. In Emerald, because objects are mobile, it is
possible to avoid most remote references to invocation pa-
rameters by moving them to the site of the callee. Whether
or not this is worthwhile depends on the size of the pa-
rameter object, the number of active invocations of the
object, and the number of invocations of the object to be
initiated by the destination.

Argument motion may be appropriate in two cases.
First, based on type information available at compile time,
the compiler may choose to move an object along with
the invocation. For example, since integers are small and
immutable, they are obvious candidates for relocation.

Second, the programmer may explicitly request that an
object be moved with the invocation, based on his own
information. This is done by means of a new parameter
passing mode that we call call-by-move. A call-by-move
parameter object is passed by reference (as is any other
parameter). However, at call time the call-by-move ar-
gument object is moved to the destination node, allowing
it to be efficiently referenced by the invokee. The pro-
grammer can also specify that the argument is to move
back upon completion of the invocation.

Call-by-move is a performance optimization, since it
could be emulated by first moving each of the call-by-
move parameter objects to the invokee's node, and then
invoking the object. However, performing the moves sep-
arately would cause multiple messages to be sent across
the network. For small objects, it is significantly more
efficient to package the referenced objects together with
the invocation, thereby reducing the network traffic and
message count.

Although call-by-move reduces the cost of references
made by the invokee, it increases the cost of the invoca-
tion itself. If the parameter object is mutable and shared,
it also increases the cost of references by the invoker. One
of the goals of Emerald is to enable us to investigate these
tradeoffs experimentally.

C. Addressing and Storage Structure
Performance is an important goal of the Emerald sys-

tem, and our implementation stresses a high degree of in-
tegration between the compiler and the run-time kernel.
The interface between them is defined so that many func-
tions can be performed either by the kernel, by the com-
piler, or by compiler-generated code. For example, the
compiler may detect that an invocation will always be lo-
cal and generate code that circumvents the more general
invocation mechanism of the kernel. Thus, while Emerald
has a uniform object model, objects can be implemented
in different ways using different addressing mechanisms,
different storage structures, and different invocation pro-
tocols.

As previously stated, simple local objects can be di-
rectly allocated within the containing object's data area.
Such objects are addressed directly by offset in the data
area; no other structures are needed. More complex local
objects are heap allocated and are accessed through a 32-
bit data address stored in the object's data area. Finally,
remotely accessible objects have a 64-bit object reference
in the containing object's data area. An object reference
consists of the address of an object descriptor and the ad-
dress of the object's operation vector. The object descrip-
tor contains necessary control information including the
object's current location and a pointer to the object's data
area.

To support object mobility, internode object references
either must be location independent or must be translated
when crossing node boundaries. Both options impact per-
formance; however, the impact is lessened by integrating
distribution support into the programming language. We
have chosen to optimize for the local case at a small pen-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13. NO. I , JANUARY 1987

inCoreFile op veclor

addr(Seek)

Object Reference addr(Wri1e)

descriplor pointer

Object Descriptor inCoreFile data area contents data area

lag 1%

data area pointer
(200 characters)

descriptor poinler ' OID position: 32-bit integer

forwarding addr

Hashed Objecl Table

Fig. 4. Storage layout for inCoreFile.

alty to mobility. Therefore, efficient location-dependent
references are used locally, but these references must be
translated when an object moves.

In addition to an object descriptor, each remotely ac-
cessible object is assigned a unique object id (OID). Each
node has an Object Table that stores pointers to the local
object descriptors for all remotely accessible objects. The
object table is accessed by a hash function using the OID
as a key. When a reference to the object is sent across the
network, the OID and a forwarding address (see Section
V-E) for the object are sent along as well. At the desti-
nation node, the reference is translated to a node-local
object descriptor address by looking up the OID in the
object table. If the lookup fails then a local object descrip-
tor is created using the OID and forwarding address passed
with the reference.

If an object moves then only the descriptor need be
changed. This allows for efficient referencing of node-
local objects-there is no need for a table lookup as is the
case for referencing Accent ports [27], Eden objects [I],
or Smalltalk objects [I 51.

For example, Fig. 4 shows the addressing and storage
structure for an inCoreFile object as previously defined in
Fig. 1. On the left of the figure are a reference to the
inCoreFile object and the Object Table. The inCoreFile
reference contains pointers to the object descriptor and an
operation vector. The inCoreFile's object descriptor
points to its data area. Inside of the data area are two vari-
ables: contents, a reference to a vector object, and posi-
tion, a reference to an integer object (lines 6 and 7). The
vector object has been heap allocated and is referenced by
its heap address. The integer object has been allocated
directly in the inCoreFile's data area. In this case, be-
cause both objects are local and both implementations are
known at compile time, the compiler does not generate an
operation vector or procedure calls; instead, it generates
in-line machine instructions to execute these objects' op-
erations. For example, the addition and assignment in line
11 of Fig. 1 reduces to a single VAX increment instruc-
tion, while the getElement invocation on line 10 produces
in-line instructions to perform the bounds check and
move. Objects that may be referenced remotely are also
heap allocated but would be referenced indirectly through
an object descriptor, as noted above.

D. Moving Objects
To support object mobility, the Emerald compiler gen-

erates relocatable code and provides the kernel with de-
scriptions of the structure of objects. These compiler-gen-
erated descriptions, called templates, enable the kernel to
find the variables that need to be translated upon migra-
tion. To move an object, the object data area is traversed
using the compiler-generated template. During the tra-
versal, a translation table is constructed that maps node-
local addresses of global objects into OID's. Local ob-
jects referenced by the migrating object are moved to-
gether with the object data area and their node-local ad-
dresses are also entered into the translation table. At the
destination, the object data area is rebuilt and the refer-
ences are translated into node-local addresses.

The migrating object may have one or more processes
executing within it. These processes are suspended and
the activation records for operations of the object are
moved along with the object data area. In this way, the
stack becomes segmented; each segment is represented
internally as if it were an object, i.e., it is given an object
descriptor and an OID. When an operation returns, the
stack segment to return to may be found using the general
object location algorithm (described in the next section).

The precopy employed by the V system [34] avoids
suspending processes during most of the migration. Since
most objects in our system will be significantly smaller
than the logical hosts of V, we would not expect to gain
much from using this precopy technique. Furthermore, the
technique requires access to the dirty bits of the paging
hardware and such access is not available to our current
prototype.

E. Keeping Track of Mobile Objects
When an object moves, it leaves behind a forwarding

address in the object descriptor so that invocations sent
to its old location can be forwarded. Every time a refer-
ence is passed between nodes, the forwarding address is
passed as well. To enable a node to decide which of two
forwarding addresses is the most recent, a simple time-
stamp is included in the forwarding address. Fowler [13],
[14] has shown that it is sufficient to let the timestamp
merely be the number of times an object has attempted to
move. We plan to experiment with several of the for-

BLACK el al.: DISTRIBUTlON AND ABSTRACT TYPES IN EMERALD 75

warding address propagation policies outlined by Fowler
and with the policy used for updating DEMOSIMP [26]
links.

When machines crash, forwarding addresses are lost
unless they are kept on stable storage. Emerald is de-
signed to operate within a local area network; this makes
it possible to recover forwarding addresses by exhaustive
search, and thus avoids committing forwarding addresses
to stable storage on every update. The exhaustive search
is implemented using a reliable broadcast protocol [8]
which is optimized for the case when the referenced ob-
ject is accessible.

VI. CURRENT STATUS AND PERFORMANCE
Our current prototype of Emerald and its run-time sys-

tem runs on a small local area network of DEC Micro-
VAX I1 computers running U L T R I X ~ ~ (DEC's version
of Berkeley U N I X ~ ~ 4.2 bsd). Using UNIX avoids the
need for implementation of low-level machine-specific
and device-specific software. The cost of UNIX is seen
in the performance of certain functions, most notably ma-
chine-to-machine communications. Our use of UNIX does
not have significant impact on the implementation of ob-
jects within a single node.

Each node is implemented as a UNIX process and all
objects residing on a particular node share that single ad-
dress space. As in Concurrent Pascal [5] and MesaIPilot
[32], protection is provided by the compiler; no hardware
protection scheme is used. The prototype does not support
multiple languages-only Emerald programs may be run
on top of the Emerald kernel. Processes are lightweight,
making context switching fast; processes and monitors are
implemented in a manner similar to Concurrent Pascal [6].
The use of a single address space makes it possible to
implement process management and node-local commu-
nication efficiently. Since objects can move to and from a
node, dynamic loading is supported. This also enables the
kernel to migrate an object to backing store so that its data
area can be reused.

The Emerald compiler and run-time system are cur-
rently able to support the creation and invocation of Em-
erald objects on a single processor or across the network.
We are currently working on the implementation of object
mobility and distributed garbage collection. The per-
formance of local operations is summarized in Table 11.
The implementation of remote invocations is not yet at a
stage where performance figures are meaningful.

VII. SUMMARY
We have described the approach to typing and distri-

bution taken in Emerald. By supporting abstract types,
Emerald recognizes that a given abstraction will often be
implemented in several ways. This allows a system to
evolve and permits the coexistence of multiple compiler-
generated implementations that take advantage of distri-

TM ULTRIX is a trademark of Digital Equipment Corporation.
TM UNIX is a trademark of AT&T Bell Laboratories.

TABLE I1
PERFORMANCE OF LOCAL OPERATIONS

1 Example I Implementation (time (~ s) I
position c position + 1 1 inline call 1.5
c c contents.getElemenr[position] inline call
inCoreFileSeek[Ol potentially remote call 1 2 1

bution and locality. In addition, the concept of object mo-
bility and call-by-move allows call-by-reference seman-
tics to be used uniformly at all interobject interfaces, thus
simplifying the construction and reconfiguration of dis-
tributed applications.

We believe that the integration of these system concepts
into a programming language will allow us to use the same
object model for both programming in the small and for
programming in the large, and to achieve an efficient im-
plementation in both cases. We are building a prototype
compiler and run-time system to demonstrate the viability
of our approach.

[l] G. T. Almes, A. P. Black, E. D. Lazowska, and J. D. Noe, "The
Eden system: A technical review," IEEE Trans. Sofrware Eng., vol.
SE-11, pp. 43-59, Jan. 1985.

[2] A. D. Birrell and B. J. Nelson, "Implementing remote procedure
calls," ACM Trans. Comput. Syst., vol. 2, no. 1, pp. 39-59, Feb.
1984; presented at the Ninth ACM Symp. Operat. Syst. Principles,
Oct. 1983.

[3] A. P. Black, "The Eden programming language," Dep. Comput. Sci.,
Univ. Washington, Seattle, Tech. Rep. 85-09-01, Dec. 1985.

[41 A. Black, N. Hutchinson, E. Jul, and H. Levy, "Object structure in
the Emerald system," in Proc. ACM Conf. Object-Oriented Pro-
gram. Syst., Lung. and Applications, Portland, OR, Oct. 1986, pp.
78-86.

[5] P. Brinch Hansen, "The programming language Concurrent Pascal,"
IEEE Trans. Sofrware Eng., vol. SE-2, pp. 199-205, June 1975.

[6] -, The Architecture of Concurrent Programs. Englewood Cliffs,
NJ: Prentice-Hall, 1977.

[7] D. A. Buttefield and G. J. Popek, "Network tasking in the LOCUS
Distributed UNIX system," in Proc. USENIX Summer 1984 Conf.,
1984.

[8] J. Chang and N. F. Maxemchuk, "Reliable broadcast protocols,"
ACM Trans. Compur. Syst., vol. 2, no. 3, pp. 251-273, Aug. 1984.

[9] A. Demers and J. Donahue, "Revised report on Russell," Dep. Com-
put. Sci., Cornell Univ., Ithaca, NY, Tech. Rep. 79-389, Sept. 1979.

[lo] L. P. Deutsch and A. M. Schiffman, "Efficient implementation of the
Smalltalk-80 system," in Proc. Eleventh ACM Symp. Principles of
Program. Lung., Salt Lake City, UT, Jan. 1984, pp. 297-302.

[l l] J. Donahue and A. Demers, "Data types are values," ACM Trans.
Program. Lung. Syst., vol. 7, no. 3, pp. 426-445, July 1985.

[I21 D. L. Eager, E. D. Lazowska, and J. Zaho jan, "Dynamic load shar-
ing in homogenous distributed systems," IEEE Trans. Sofhvare Eng.,
vol. SE-12, pp. 662-675, May 1986.

[13] R. J. Fowler, "Decentralized object finding using fotyarding ad-
dresses," Ph.D. dissertation, Dep. Comput. Sci., Univ. Washington,
Seattle, Tech. Rep. 85-12-1, Dec. 1985.

[14] -, "The complexity of using forwarding addresses for decentral-
ized object finding," in Proc. Fifth SIGACT/SIGOPS Conf. Princi-
ples of Distributed Computation, Calgary, Alta., Canada, Aug. 1986.

1151 A. Goldberg and D. Robson, Smalltalk-80: The Language and its Im-
plementation. Reading, MA: Addison-Wesley, 1983.

I161 I. Greif, R. Seliger, and W. Weihl, "Atomic data abstractions in a
distributed collaborative editing system," in Proc. Thirteenth ACM
Symp. Principles of Program. Lung., Jan. 1986.

I171 M. Herlihy and B. Liskov, "A value transmission method for abstract
data types," ACM Trans. Program. Lung. Syst., vol. 4, pp. 527-551,
Oct. 1982.

1181 C. A. R. Hoare, "Monitors: An operating system structuring con-
cept," Commun. ACM, vol. 17, no. 10, pp. 549-557, Oct. 1974.

76 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

[19] R. C. Holt, Concurrent Euclid, the Unix System, and Tunis. Read-
ing, MA: Addison-Wesley, 1983.

[20] A. K. Jones, R. J. Chansler, Jr., I. Durham, K. Schwans, and S. R.
Vegdahl, "StarOS, a multiprocessor operating system for the support
of task forces,"in Proc. Seventh ACM Symp. Operat. Syst. Princi-
ples, Dec. 1979, pp. 117-127.

[21] G. Krasner, Ed., Smalltalk-80: Bits of History, Words of Advice.
Reading, MA: Addison-Wesley , 1983.

[22] B. Liskov, "Primitives for distributed computing," in Proc. Seventh
ACM Symp. Operat. Syst. Principles, Dec. 1979, pp. 33-42.

1231 B. Liskov, R. Atkinson, T. Bloom, E. Moss, C. Schaffert, B. Schei-
fler, and A. Snyder, "CLU reference manual," Lab. Comput. Sci.,
Massachusetts Inst. Technol., MITILCSlTech. Rep.-225, Oct. 1979.

[24] B. Liskov and R. Scheiffer, "Guardians and actions: Linguistic sup-
port for robust, distributed programs," in Proc. Ninth ACM Symp.
Principles of Program. Lang., 1982.

[25] g. Liskov, "Overview of the Argus language and system," Lab.
Comput. Sci., Massachusetts Inst. Technol., Programming Method-
ology Group Memo 40, Feb. 1984.

[26] M. L. Powell and B. P. Miller, "Process migration in DEMOSIMP,"
in Proc. Ninth ACM Symp. Operat. Syst. Principles, Oct. 1983, pp.
1 10- 1 19.

[27] R. F. Rashid and G. G. Robertson, "Accent: A communication ori-
ented network operating systems kernel," in Proc. Eighth ACM Symp.
Operat. Sysr. Principles, Oct. 1981, pp. 64-75.

[28] J. C. Reynolds, "Using category theory to design implicit conver-
sions and generic operators." in Semantics-Directed Compiler Gen-
eration (Lecture Notes in Computer Science). New York: Springer-
Verlag, 1980.

1291 J. C. Reynolds, "The essence of Algol," in Algorithmic Languages,
J. W. de Bakker and J. C. van Vliet, Eds. Amsterdam, The Neth-
erlands: North-Holland, 1981.

[30] C. Schaffert, T. Cooper, B. Bullis, M. Kilian, and C. Wilpolt, "An
introduction to TrellislOwl." in Proc. ACM Conf. Object-Oriented
Program. Syst., Lang., and Applications, Portland, OR, 1986, pp.
9-16.

[31] R. W. Scheifler, "An analysis of inline substitution for a structured
programming language," Commun. ACM, vol. 20, no. 9, pp. 647-
654, Sept. 1977.

[32] R. E. sweet, "The Mesa programming environment," in Proc. ACM
SIGPLAN 1985 Symp. Program. Lang. Issues in Program. Environ-
ments; also SIGPLAN Notices, vol. 20, no. 7, pp. 216-229, June
1985.

1331 W. Teitelman, "A tour through Cedar," in Proc. Seventh Inr. Conf:
Sofrware Eng., Orlando, FL, Mar. 1984.

[34] M. M. Theimer, K. A. Lantz, and D. R. Cheriton, "Preemptable
remote execution facilities for the V-system," in Proc. Tenth ACM
Symp. Operat. Syst. Principles, Orcas Island, WA, Dec. 1985, pp.
2-12.

1351 W. A. Wulf, R. Levin, and S. P. Harbison, HYDRA/C.mmp: An Ex-
perimental Computer System. New York: McGraw-Hill, 1981.

Andrew Black was born in London, England. He
received the B.Sc. (Hons.) degree from the Uni-
versity of East Anglia in computing studies, and
the D.Phil. degree from the Programming Re-
search Group of the University of Oxford in pro-
gramming languages and software engineering.

He has been on the faculty of the Department
of Computer Science at the University of Wash-
ington. Seattle. since 1981. His current research
interests are in the areas of distributed systems and
programming language design, and in the way

these areas interrelate.
Dr. Black is a member of the Association for Computing Machinery,

the British Computer Society, the Union of Concerned Scientists, and
Computer Professionals for Social Responsibility, and an affiliate of the
IEEE Computer Society.

Norman Hutchinson received the B.Sc. degree in
computer science from the University of Calgary,
Calgary, Alta., Canada, in 1982, the M.S. degree
in computer science from the University of Wash-
ington, Seattle, in 1985, and expects to receive
the Ph.D. degree from the University of Washing-
ton in late 1986. His thesis topic is programming
language design for distributed systems.

Effective January 1987, he will be an Assistant
Professor of Computer Science at the University
of Arizona in Tucson.

Eric Jul was born in Roskilde, Denmark. He re-
ceived the Cand. Scient. (M.S.) degree from the
University of Copenhagen, Copenhagen, Den-
mark, in 1980.

Currently, he is working toward the Ph.D. de-
gree at the University of Washington, Seattle. His
research interests are object-oriented systems, the
design and implementation of programming lan-
guages for distributed systems, and distributed
garbage collection. His thesis topic is object mo-
bility in distributed systems.

Mr. Jul is a member of the Association for Computing Machinery, Com-
puter Professionals for Social Responsibility, and the Danish Computing
Society.

Henry Levy received the B.S. degree from Car-
negie-Mellon University, Pittsburgh, PA, and the
M.S. degree from University of Washington, Se-
attle.

He is Research Assistant Professor in the De-
partment of Computer Science at the University
of Washington and a Consulting Engineer on leave
from Digital Equipment Corporation. His re-
search interests include operating systems, dis-
tributed systems, and computer architecture. He
is author of the book capab i l i t y -~ased Computer

Systems and coauthor of Computer Programming and Architecture: The
VAX-11.

MA. His research inte~

Lar ry Carter received the A.B. degree in math-
ematics from Dartmouth College, Hanover, NH,
in 1969, and the Ph.D. degree in mathematics
from the University of California at Berkeley in
1974.

Since 1975, he has been at IBM's Thomas J.
Watson Research Center in Yorktown Heights,
NY, except for sabbatical leaves to teach at the
Penn State University and at Berkeley, and ex-
tended visits to the University of Washington in
Seattle and to Hamsphire College in Amherst,

:sts include the theory of computation and VLSI.

